eORCA025.L121-OPM021

Summary

Compare to eORCA025.L121-OPM020, we change the icb distribution (stern et al. 2016) and some sea ice parameters (drag and snow conductivity) based on Katherine simulation.

Namelist

Only the change compare to the reference (eORCA025.L121-OPM020) a mentioned in the next sections.

Full files are available here: https://github.com/pmathiot/NEMOCFG/tree/main/cfgs/eORCA025.L121-OPM021/cfgs/eORCA025.L121-OPM021/EXPREF

namelist_ice

namdyn_rhg

  • the simulation do not use the aevp rheology, and only iterate 100 times instead of 120 times.

!------------------------------------------------------------------------------
&namdyn_rhg     !   Ice rheology
!------------------------------------------------------------------------------
   ln_rhg_EVP       = .true.          !  EVP rheology
      ln_aEVP       = .false.          !     adaptive rheology (Kimmritz et al. 2016 & 2017)
      rn_creepl     =   2.0e-9        !     creep limit [1/s]
      rn_ecc        =   2.0           !     eccentricity of the elliptical yield curve
      nn_nevp       = 120             !     number of EVP subcycles
      rn_relast     =   0.333         !     ratio of elastic timescale to ice time step: Telast = dt_ice * rn_relast
                                      !        advised value: 1/3 (nn_nevp=100) or 1/9 (nn_nevp=300)
   nn_rhg_chkcvg    =   0             !  check convergence of rheology
                                      !     = 0  no check
                                      !     = 1  check at the main time step (output xml: uice_cvg)
                                      !     = 2  check at both main and rheology time steps (additional output: ice_cvg.nc)
                                      !          this option 2 asks a lot of communications between cpu
/

namsbc

  • the ice-ocean drag is set to 5e-3 instead of 12e-3

!------------------------------------------------------------------------------
&namsbc         !   Ice surface boundary conditions
!------------------------------------------------------------------------------
   rn_cio           =   5.0e-03       !  ice-ocean drag coefficient (-)
   nn_snwfra        =   2             !  calculate the fraction of ice covered by snow (for zdf and albedo)
                                      !     = 0  fraction = 1 (if snow) or 0 (if no snow)
                                      !     = 1  fraction = 1-exp(-0.2*rhos*hsnw) [MetO formulation]
                                      !     = 2  fraction = hsnw / (hsnw+0.02)    [CICE formulation]
   rn_snwblow       =   0.66          !  mesure of snow blowing into the leads
                                      !     = 1 => no snow blowing, < 1 => some snow blowing
   nn_flxdist       =  -1             !  Redistribute heat flux over ice categories
                                      !     =-1  Do nothing (needs N(cat) fluxes)
                                      !     = 0  Average N(cat) fluxes then apply the average over the N(cat) ice
                                      !     = 1  Average N(cat) fluxes then redistribute over the N(cat) ice using T-ice and albedo sensitivity
                                      !     = 2  Redistribute a single flux over categories
   ln_cndflx        = .false.         !  Use conduction flux as surface boundary conditions (i.e. for Jules coupling)
      ln_cndemulate = .false.         !     emulate conduction flux (if not provided in the inputs)
   nn_qtrice        =   1             !  Solar flux transmitted thru the surface scattering layer:
                                      !     = 0  Grenfell and Maykut 1977 (depends on cloudiness and is 0 when there is snow)
                                      !     = 1  Lebrun 2019 (equals 0.3 anytime with different melting/dry snw conductivities)
/

namthd_zdf

  • the snow conductivity is increased from 0.31 to 0.35

!------------------------------------------------------------------------------
&namthd_zdf     !   Ice heat diffusion
!------------------------------------------------------------------------------
   ln_zdf_BL99      = .true.          !  Heat diffusion follows Bitz and Lipscomb 1999
   ln_cndi_U64      = .false.         !  sea ice thermal conductivity: k = k0 + beta.S/T            (Untersteiner, 1964)
   ln_cndi_P07      = .true.          !  sea ice thermal conductivity: k = k0 + beta1.S/T - beta2.T (Pringle et al., 2007)
   rn_cnd_s         =   0.35          !  thermal conductivity of the snow (0.31 W/m/K, Maykut and Untersteiner, 1971)
                                      !     Obs: 0.1-0.5 (Lecomte et al, JAMES 2013)
   rn_kappa_i       =   1.0           !  radiation attenuation coefficient in sea ice                     [1/m]
   rn_kappa_s       =  10.0           !  nn_qtrice = 0: radiation attenuation coefficient in snow         [1/m]
   rn_kappa_smlt    =   7.0           !  nn_qtrice = 1: radiation attenuation coefficient in melting snow [1/m]
   rn_kappa_sdry    =  10.0           !                 radiation attenuation coefficient in dry snow     [1/m]
   ln_zdf_chkcvg    = .false.         !  check convergence of heat diffusion scheme (outputs: tice_cvgerr, tice_cvgstp)
/

namthd_do

  • the frazil ice parametrization is turned off

!------------------------------------------------------------------------------
&namthd_do      !   Ice growth in open water
!------------------------------------------------------------------------------
   rn_hinew         =   0.1           !  thickness for new ice formation in open water (m), must be larger than rn_himin
   ln_frazil        = .false.          !  Frazil ice parameterization (ice collection as a function of wind)
      rn_maxfraz    =   1.0           !     maximum fraction of frazil ice collecting at the ice base
      rn_vfraz      =   0.417         !     thresold drift speed for frazil ice collecting at the ice bottom (m/s)
      rn_Cfraz      =   5.0           !     squeezing coefficient for frazil ice collecting at the ice bottom
/

Monitoring

Global indicators

On these plot you can find a time series of:

  • ACC transport

  • AMOC at rapid array

  • AMHT at rapid array

  • Net global heat fluxes

  • mean sst in the southern ocean (see box in the map)

  • mean sst in the North West Corner (see box in the map)

  • sea ice extent (arctic/ant in summer/winter)

_images/VALGLO_OPM021.png

Regional indicators

On these plot, you can find time series of:

  • ACC transport

  • Maximum of the Weddell and Ross Gyre (box where the max compute show in the map)

  • Mean bottom salinity over the main dense water formation hot spot (West Ross and West FRIS)

  • Mean bottom temperature over East Ross and Amudsen sea to monitor CDW intrusion

_images/VALSO_OPM021.png

Local indicators

These plots monitor the evolution of ice shelf melting and the corresponding shelf properties (ROSS, FRIS, PINE, GETZ)

_images/VALSI_OPM021.png

Amundsen/Belingshausen seas

These plot monitoring the evolution of temperature, salinity and ice shelf melt in Amundsen sea.

_images/VALAMU_OPM021.png

Ice shelves

Amery

_images/AMER_eORCA025.L121-OPM021.png

Ross

_images/ROSS_eORCA025.L121-OPM021.png

Getz

_images/GETZ_eORCA025.L121-OPM021.png

Pine island

_images/PINE_eORCA025.L121-OPM021.png

George VI

_images/GEVI_eORCA025.L121-OPM021.png

Filschner Ronne

_images/FRIS_eORCA025.L121-OPM021.png

Riiser

_images/RIIS_eORCA025.L121-OPM021.png

Fimbul

_images/FIMB_eORCA025.L121-OPM021.png

Evaluation

Ice shelf melt: the pictures below are the climatological melt for all the ice shelves in NEMO for the OPM020 and OPM021 simulations over the last decade of the simulations (2029-2038) by sectors.

_images/WAIS_eORCA025.L121-OPM021_OPM020_y2029_10y.png _images/EAIS_eORCA025.L121-OPM021_OPM020_y2029_10y.png _images/WEDD_eORCA025.L121-OPM021_OPM020_y2029_10y.png

Map of ice shelf melt for both simulations OPM020 and OPM021 over the last decade of the simulations (2029-2038) with bottom temperature.

_images/melt_sector_OPM020_2029-2038.png _images/melt_sector_OPM021_2029-2038.png

Map of barotropic stream function for both simulations OPM020 and OPM021 over the last decade of the simulations (2029-2038)

_images/BSF_y2029_OPM020_OPM021.png